California Needs to Take Immediate Action on ZEV Infrastructure for Medium- and Heavy-Duty Vehicles

• California is behind on both hydrogen and electric vehicle charging infrastructure for medium- and heavy-duty vehicles.

• Significant charging infrastructure is needed, and the state must support the deployment of public and private charging stations and requisite grid improvements.

• Development of hydrogen fueling infrastructure (hydrogen production and transportation) must start now to support the large number of hydrogen vehicles that are anticipated in the late 2020s and beyond.

• Status quo will result in insufficient charging and hydrogen infrastructure, idled vehicles, and failure to successfully meet California’s climate goals.

56,000*: The number of electric trucks required to be on the road by 2026 in California

To meet California’s 2026 battery-electric trucks goals, nearly 50,000 high-power charge ports are needed.

6.25 Million Photovoltaic (PV) Panels

666 Utility-Scale Wind Turbines

200 Million LEDs

306: The number of trucks on the road today

1,000 battery-electric trucks

Solutions Need to be Implemented Quickly

- Fast track permitting for charging and hydrogen fueling stations.
- Estimate load for charging and hydrogen production and work with utilities to implement grid improvements along freight corridors and other hubs.
- Create “offramps” in the form of clear criteria and a process to prevent premature and costly investments in vehicles that will not be used due to lack of infrastructure.

Electrical Load Estimates Show up to 2GW of Additional Load from Medium- and Heavy-Duty ZEVs

---

1 CARB Spreadsheet provide to CCEEB by ACF staff (May 2022)
2 CEA extrapolation from CEC Report Electric Vehicle Charging Infrastructure Assessment - AB 2127. AB 2127 Report says that 157,000 DC fast chargers are needed to support 180,000 medium- and heavy-duty vehicles in 2030, of which 141,000 are 50 kW and 16,000 are 350 kW. This is a ratio of 0.87 chargers per truck, of which 90% are 50 kW and 10% are 350 kW. CEA applied this charger ratio to the CARB data.